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A B S T R A C T

Alzheimer’s disease (AD) is a progressive neurodegenerative condition, and early intervention can help slow its
progression. However, integrating multi-dimensional information and deep convolutional networks increases
the model parameters, affecting diagnosis accuracy and efficiency and hindering clinical diagnostic model
deployment. Multi-modal neuroimaging can offer more precise diagnostic results, while multi-task modeling
of classification and regression tasks can enhance the performance and stability of AD diagnosis. This study
proposes a Hierarchical Attention-based Multi-task Multi-modal Fusion model (HAMMF) that leverages multi-
modal neuroimaging data to concurrently learn AD classification tasks, cognitive score regression, and age
regression tasks using attention-based techniques. Firstly, we preprocess MRI and PET image data to obtain
two modal data, each containing distinct information. Next, we incorporate a novel Contextual Hierarchical
Attention Module (CHAM) to aggregate multi-modal features. This module employs channel and spatial
attention to extract fine-grained pathological features from unimodal image data across various dimensions.
Using these attention mechanisms, the Transformer can effectively capture correlated features of multi-modal
inputs. Lastly, we adopt multi-task learning in our model to investigate the influence of different variables on
diagnosis, with a primary classification task and a secondary regression task for optimal multi-task prediction
performance. Our experiments utilized MRI and PET images from 720 subjects in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset. The results show that our proposed model achieves an overall accuracy
of 93.15% for AD/NC recognition, and the visualization results demonstrate its strong pathological feature
recognition performance.
1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease that pro-
gressively causes cognitive impairment in patients due to neuronal
damage in the brain [1]. AD typically involves changes in brain struc-
ture such as cortical atrophy, enlargement of the ventricular area, and
a reduction in hippocampal volume [2]. Fig. 1 shows brain images of
healthy people and those with AD. According to research by World
Health Organization (WHO), more than 55 million people are in the
early stages of Alzheimer’s disease as of 2021, and Alzheimer’s dis-
ease related brain degeneration is among the top 10 causes of death
worldwide. The global cost of caring for AD patients is $2.8 trillion,
placing a huge financial burden on society [3]. Clinical experts say
that early diagnosis of patients is extremely important to mitigate
the severity of dementia. Early treatment can significantly delay AD
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progression and enhance patients’ quality of life. A range of brain
imaging techniques using Magnetic resonance imaging (MRI) [4,5] and
positron emission computed tomography (PET) provides a noninvasive
and effective examination to help diagnose and understand the anatom-
ical and functional changes associated with AD [6], with promising
results in the diagnosis of AD/NC.

Numerous significant studies for building Alzheimer’s disease diag-
nostic models rely heavily on 3D convolution. While 2D convolution
can only capture features along the length and width of an image, 3D
convolution can extract features across all three dimensions of image
depth, width, and length, representing the spatial dependence of the
3D image. This makes 3D convolution more effective at classifying
AD development stages. However, the high dimensionality and high
resolution of 3D neuroimaging data mean that many disease features
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Fig. 1. Comparison of cross-sectional and coronal brain structural changes in two
directions between the late Alzheimer’s disease brain (top) and normal control brain
(bottom).

are hidden within the data, requiring researchers to build deeper
models with more parameters to train the data properly and extract
the underlying information. Nevertheless, very deep 3D convolutional
neural networks can be computationally expensive and consume signif-
icant memory. Although residual networks like ResNet [7] and dense
blocks like DenseNet [8] can build very deep networks to learn 3D data
features, these networks are ineffective at classifying complex brain
neuroimaging data, and training them remains time-consuming. On
the other hand, multi-modal fusion, with early, late, and hybrid fusion
approaches [9], is one frontier area of multi-modal deep learning. Dif-
ferent imaging techniques provide information about different aspects
of brain structure and function. Deep learning models are able to fuse
these multi-modal data to extract more comprehensive features that can
improve the diagnostic accuracy of AD. Fusing multi-modal data has
two main benefits: First, the model can make more robust predictions
by fusing data from multiple modalities of a given pathological phe-
nomenon. Second, the model can extract complementary information
from multiple modalities to improve diagnostic accuracy. However, tra-
ditional multi-modal fusion algorithms ignore the correlations between
the multi-modal images.

This study takes a three-step approach. The initial stage of this study
involves extracting primary (shallow) feature representations from two
multi-modal Alzheimer’s disease image datasets by pre-training the
ResNet network. Second, a novel contextual hierarchical attention mod-
ule (CHAM) is proposed to fuse the feature representations from mul-
tiple modalities. The CHAM module is designed to be robust for dis-
ease diagnosis by capturing attention from different modalities. Un-
like SENET [10], CHAM addresses the lack of correlation between
modalities by focusing on regions of interest using channel and spatial
features. Finally, the study employs visualization techniques to assign
weights to the model’s gradient parameters at each training stage,
demonstrating the degree of attention the model pays to different brain
regions. The main contributions of this study are outlined below:

• The study proposes a Hierarchical Attention-based Multi-task
Multi-modal Fusion (HAMMF) model for the computer-aided
diagnosis of Alzheimer’s disease. The CHAM module of the model
accurately extracts feature data and multi-modal association data
from multi-modal 3D neuroimages without significantly increas-
ing the network’s redundancy. The module’s channel and spatial
attention capture the target object’s attention weights, which
can effectively focus on the focal areas of 3D neuroimages. The
module uses a Transformer to capture multi-modal contextual
attention weights and automatically learn the correlation between
multi-modal hierarchies, which enables the CHAM module to
capture the exact location of the lesion.
2

• The study effectively constructs a multi-task learning framework
that uses subjects’ demographic characteristics, compensating for
the inductive bias that a single task lacks by incorporating losses
from different tasks. The classification task serves as the main task
to provide guidance, while clinically relevant Alzheimer’s disease
score indicators and age serve as regression tasks, providing addi-
tional evidence for diagnosis. Multi-task joint learning effectively
assists disease diagnosis and improves accuracy.

• The model exhibits good generalization and robustness, achieving
a detection accuracy of 93.15% on the Alzheimer’s Disease Neu-
roimaging Initiative ADNI [11] dataset. The paper also visualizes
MRI images using interpretability methods, with the highlighted
activation regions representing the areas of focus of the network,
which are also abnormal regions during AD development. Com-
paring the visualization results of heat maps of different networks
verifies the effectiveness of the proposed method.

The remaining part of the paper is organized as follows: An
overview of related work on Alzheimer’s disease diagnosis research
is provided in Section 2. Section 3 presents the dataset used in this
study, while Section 4 introduces the proposed method. In Section 5,
the model proposed in this paper is evaluated and compared to recent
Alzheimer’s disease diagnostic models. Section 6 presents the conclu-
sions drawn from the study, while Section 7 outlines some limitations
of the current work and proposes directions for future research.

2. Related work

This study section overviews related work in multi-modal diag-
nostic models for Alzheimer’s disease. It begins by reviewing studies
on models for diagnosing Alzheimer’s disease using multiple modal-
ities (multi-modal), followed by a review of the multi-task learning
approach. The section then concludes with a discussion of attention
mechanisms and how they have been applied in the field of medical
imaging analysis.

2.1. Multi-modal Alzheimer’s disease diagnostic model

Convolutional neural networks (CNNs) have been instrumental in
multi-modal Alzheimer’s disease diagnosis. Previous studies on brain
disease diagnosis can be classified into four categories: 2D slice-level,
3D patch-level, ROI-based, and 3D subject-level, depending on the in-
put type of the network. The 2D slice-level approach involves extracting
2D slices from 3D MRI images and inputting them into a 2D CNN to
learn relevant features [12,13]. However, this model cannot express
the relationships between slices and is impractical due to input clip-
ping. The 3D patch-level method overcomes the limitations of the 2D
slice-level method by obtaining partial patches [14–16], but lacks the
correlation between different patches. In the ROI-based method [17],
ROI templates designed by clinical experts are used to determine brain
function or structural blocks. However, this approach also lacks com-
plete brain region correlation information. In deep learning approaches
using whole 3D MRI images as input, more research has begun utilizing
entire 3D information to discover pathology with stronger correlations
and higher accuracy. Zhao et al. [18] obtained three MRI images
of different sizes as the input of the model by setting transposed
convolutions of different sizes. D2BOF-COVIDNet [19] presented an
advanced framework that integrates deep Bayesian optimization and
feature fusion techniques to enhance the classification of COVID-19 us-
ing chest X-ray and MRI images. Odusami et al. [20] presented an early
fusion framework and a modified Resnet18 deep learning architecture
for Alzheimer’s disease diagnosis, leveraging both MRI and PET scans to
improve accuracy, achieving a 73.90% classification rate on the ADNI
database and incorporating an Explainable AI model for result interpre-
tation. Odusami et al. [21] proposed a novel multi-modal neuroimaging
fusion method for AD diagnosis, combining advanced convolutional
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techniques to achieve high classification accuracy with a Mobile Vision
Transformer on multiple datasets. In contrast, Ge et al. [22] used
Cat12 to extract gray matter, white matter, and cerebrospinal fluid in
MRI as input. With the advancement of high-performance computing
hardware, more research has focused on end-to-end training of the
entire MRI brain to fully utilize overall information for discovering
pathological regions with a stronger correlation and higher identi-
fication. However, accurately locating the local disease area in the
3D neuroimaging data of Alzheimer’s disease remains a significant
challenge due to the large number of model parameters and the limited
amount of subject data available.

2.2. Multi-task learning

Multi-task learning is a technique that can effectively address the
issue of low training accuracy of a model under a single task. It reduces
the number of model parameters and improves generalization by de-
signing the neural network architecture to share portions of parameters
for multiple tasks. In disease classification, the clinical score is an
important evaluation index that reflects disease severity [23,24]. Using
it as one of the model’s predictive tasks can better represent the under-
lying data relationship. There are two multi-task learning scenarios in
deep learning: hard parameter sharing and soft parameter sharing. In
the hard parameter sharing approach, the first few convolutional layers
of the CNN are shared from the bottom to the top. This allows the model
to learn abstract features common to each task, reducing the number of
parameters to be learned for each task and improving generalization.
In the soft parameter sharing approach, each task owns its parameters
independently, and a small number of weighted parameters are shared
among tasks.

2.3. Attention mechanism

Attention mechanisms assign importance weights to different parts
of features based on their contributions to the overall performance.
Researchers have proposed attention mechanisms that weigh the im-
portance of different features in various parts of the feature graph to
improve overall classification performance. In natural language tasks,
the attention mechanism focuses on weighting the importance of in-
formation at different locations in a sentence, allowing the model
to concentrate on relevant features [25,26]. For example, attention
has been used to extract sentiment features [27]. In computer vision,
attention mechanisms capture task-relevant attention features from
images to improve performance accuracy. Attention mechanisms have
been widely used in medical image analysis. Researchers have proposed
attention modules for tasks like classifying or segmenting lesion regions
in medical image analysis. For example, Masood et al. [28] introduced a
CenterNet-based framework using a ResNet34 model with an attention
block for precise brain tumor localization and classification. Ramya
et al. [29] introduced a novel AD classification method using MRI data
that combines various image processing techniques, including 2D-ABF,
ECLAHE, EEM, AH, GLCM, PCA, and Logistic Regression, achieving a
high accuracy rate of 96.92%. Odusami et al. [30] investigated the
integration of MRI and PET images for AD diagnosis using Pareto
optimized deep learning models (VGG11, VGG16, VGG19), with VGG19
showing superior performance on the ADNI dataset based on various
image quality metrics. Qin et al. [31] proposed a 3D HA-ResUNet
network that uses spatial and channel attention for early dementia
diagnosis. Xie et al. [32] designed a cross-attention model to identify
high-risk regions to eliminate noise in chest disease diagnosis. Baner-
jee et al. [33] developed a new patch attention module to learn e
most discriminative patches of the fingerprint image for fingerprint
spoofing detection. Transformer models use self-attention and multi-
headed attention [34]. They have been applied to vision tasks like
image classification (ViT [35] and DeiT [36]) and object detection
(DETR) [37]. While traditional image attention and Transformer-based
3

approaches have performed well separately, few studies have combined
the two for Alzheimer’s disease diagnosis.

Compared to models integrated with CHAM, traditional CNNs might
lack the flexibility to adaptively adjust the network’s focus, poten-
tially falling short in identifying complex patterns associated with
AD. Furthermore, pure Transformer models might be less effective at
handling details compared to models that combine CNNs due to a lack
of focus on local features. Single-task learning might require training
multiple independent models when handling multiple related tasks,
leading to inefficient resource utilization and an inability to capitalize
on potential correlations between tasks. Integrated models with CHAM
and Transformers balance local and global feature extraction better
than traditional CNNs and standalone Transformer models, providing
more powerful and flexible feature representation.

The key to solving the problem of missing modality correlation in
Alzheimer’s disease image data fusion is to combine the pixel features
of different modality images into an overall hierarchical feature repre-
sentation across modalities. Different modality images contain different
amounts of information, so it is not reasonable to combine multiple
characteristics equally. The self-attention mechanism can automatically
determine the weights of each modality. With this in mind, this study
proposes a hierarchical attention-based multi-task multi-modal fusion
(HAMMF) model. The model uses an attention mechanism to efficiently
fuse Gray Matter (GM), White Matter (WM), Cerebrospinal Fluid (CSF)
imaging modalities, and PET imaging modalities, in addition to us-
ing multi-task learning to jointly guide computer-aided diagnosis of
Alzheimer’s disease.

3. Materials and equipment

3.1. Datasets and data preprocessing

The dataset utilized in this paper was obtained from the Alzheimer’s
Disease Neuroimaging Initiative [11] (ADNI) dataset, which is accessi-
ble at http://adni.loni.usc.edu. The ADNI dataset contains data from
four different periods: ADNI-1, ADNI-GO, ADNI-2 and ADNI-3, each
with a different number of subjects’ brain examination data. There
are 1193 images of 1.5T/3T T1-weighted structural MRI (sMRI) and
PET scans, as well as patient age, gender, Mini-Mental State Evalu-
ation Scale (MMSE) scores, and other basic information. According
to clinical standards, subjects were classified into AD, Mild Cognitive
Impairment(MCI) and normal control(NC) groups. The image data for
each subject in the dataset is a grayscale image with one channel and
image size 117 × 130 × 110.

In neuroscience and medical research, selecting an equal number of
participants with AD, NC, and MCI primarily aims to ensure a balanced
study design, enhance the statistical power of analyses, and reduce
variability caused by uneven sample sizes. Such balanced designs facil-
itate more equitable and comparable group comparisons by simplifying
the data analysis process. Moreover, maintaining equal sample sizes
also reflects a commitment to research ethics, ensuring that all partic-
ipants have equal opportunities regarding potential benefits or risks.
Additionally, this approach enhances the representativeness of each
study group, making the research findings more generalizable and
credible. While practical considerations such as participant availability
and research budgets might impose constraints, researchers generally
strive to achieve sample size balance to ensure the robustness of their
study conclusions. Our study selected an equal number of participants
across the Alzheimer’s Disease AD, MCI, and NC groups, each with both
MRI and PET images. We chose the smallest common number among
the three groups, 240, as the sample size for each group to ensure a
balanced comparative analysis. This approach standardizes the number
of subjects for statistical consistency and maximizes the use of available
data from the imaging modalities for all groups involved. This study,
720 subjects were selected from the ADNI dataset, including 240 NC
subjects, 240 MCI subjects, and 240 AD subjects. Each subject had both

http://adni.loni.usc.edu
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Table 1
Demographic information of subjects in the study dataset. Including group type, number
of groups, gender, age, and MMSE score.

Group NC MCI AD

Sample size 240 240 240
Gender (Male/Female) 104/136 132/107 128/112
Age (Mean ± Std) 75.72 ± 6.90 72.31 ± 7.14 77.65 ± 7.82
MMSE (Mean ± Std) 29.12 ± 1.02 26.78 ± 1.23 23.34 ± 1.10

Fig. 2. Cross-sectional, coronal, and sagittal plane images of gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF) obtained by segmenting MRI with the
CAT12 tool.

sMRI and PET image information, and demographic information for the
three disease stages is presented in Table 1. The groups described in
Table 1 represent three different stages(NC, MCI, AD).

To achieve better feature learning and classification in subsequent
steps, the raw structural MRI and PET data obtained from ADNI must
undergo pre-processing. The raw 3D NIIfTI format images are ini-
tially normalized using three non-uniformity intensity corrections of
CAT12 [38]. These corrections include 3D gradient distortion, gradient
nonlinear geometric correction, and B1 non-uniformity correction to
eliminate noise signals generated by the electromagnetic field in the
original images during scanning. Secondly, linear registration is per-
formed using AAL templates [39] to remove global linear differences,
such as global translation, scaling, and rotation differences, on all struc-
tural MR images. This registration process aligns the brain scan image
to the middle position of the entire image. Once the standard template
is registered, the data size of MRI and PET images is standardized
to 1 × 113 × 137 × 113 pixels. In the third step, CAT12 removes the
cerebellum, peels off the skull, and eliminates irrelevant image noise
from the results. In the fourth step, the SPM software package’s CAT12
is used to segment the MRI image into three different tissue type:
gray matter, white matter, and cerebrospinal fluid. The three different
tissues after segmentation are shown in Fig. 2. By combining the pre-
processed PET image modality, two modality data types that can reflect
brain disorders are obtained. The above pre-processing steps help the
model better learn and distinguish the main features of AD.

To utilize MMSE scores as a regression task, the text must incorpo-
rate data cleaning methods to restore missing MSSE scores. This process
aims to reduce the regression error of the model. MMSE serves as a
rubric for early AD stages, and clinicians use scores obtained from the
short scale to classify the disease stages.

The data corresponding to different stages has various interval
scores, and the mean filling method was used to fill in the missing
values. The average MMSE scores of all AD patients were calculated and
used to fill in the missing MMSE scores of those AD patients. Subjects’
ages with missing values were also imputed in the same way, by the
average age of subjects with the same AD stage.

3.2. Equipment

The following hardware and software were used to process all
experiment data.

Hardware: The CPU was an Intel(R) Xeon(R) Silver 4210 processor
running at 2.2 GHz with 32 GB of memory. The graphics card was
an Nvidia GeForce RTX 2080Ti with 11 GB of Video memory and the
operating system was Ubuntu 18.04.
4

Fig. 3. ResNet architecture.

Fig. 4. Architecture of hierarchical attention-based multi-task multi-modal fusion
(HAMMF) model.

Software: The software consisted of PyCharm as the IDE, Python
3.8.0 for programming, the PyTorch 1.8 library for deep learning, and
the Nibabel and Sklearn libraries. MRI and PET data preprocessing was
performed using CAT12 and SPM12 of MATLAB R2017a.

4. Methods

Alzheimer’s disease can cause cognitive impairment in the elderly,
leading to dementia or even death, often accompanied by varying
degrees of brain atrophy and lesions as physical function declines grad-
ually. Deep learning techniques can be utilized to identify the stages
of Alzheimer’s disease early and accurately, enabling appropriate dis-
ease prevention measures. This paper proposes a deep learning model
to identify disease types effectively based on hierarchical attention-
based multi-task multi-modal fusion. The subsequent sections provide
a detailed explanation of the proposed model’s specific components.

4.1. Proposed deep learning model

He et al. [7] proposed that the ResNet network architecture using
the residual structure allows the model to deepen without encoun-
tering gradient degradation problems. The constant mapping of the
residual structure (as illustrated in Fig. 3) ensures that the entire
network converges in one direction, facilitating quicker learning of
image features.

This paper proposes an attention fusion model (shown in Fig. 4) to
extract and fuse features from MRI and PET images. The model, called
Hierarchical Attention-based Multi-modal Fusion (HAMMF), has four
inputs: PET, gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) images of Alzheimer’s patients.

Pretrained ResNet18 is used to extract shallow features for each
modality. The proposed residual block consists of three stages, each
corresponding to a filter number of 64, 128, and 256, respectively. Each
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residual block is followed by a CHAM block that extracts the feature
attention maps for each branch. The multi-modal feature maps are then
reweighted and fused to assign comprehensive attention weights to
each modality.

The HAMMF model is primarily used for the classification task of
AD/NC. The model also has two regression tasks as auxiliary tasks:
predicting subjects’ age and Mini Mental State Examination (MMSE)
scores. These auxiliary tasks help improve the main classification task.

The model learns a nonlinear representation of the fused features
through a multilayer perceptron (MLP). A softmax activation function
acts on the binary classification task as follows:

𝑦 = sof tmax
(

MLP
(

𝐶0, 𝐶1)) (1)

The predicted disease classification vector is represented by y,
while 𝐶0 and 𝐶1 represent the AD and NC classifications, respectively.
MLP

(

𝐶0, 𝐶1) represents the multi-layer perceptron operating on the
AD and NC classifications.

MMSE scores and age are continuous data, with the former indicat-
ing the severity of AD development, which typically worsens with age.
To extract the MMSE score and age information, a supervised regression
task was utilized. A multi-layer perceptron (MLP) with ReLU activation
is used to predict subjects’ age represented by 𝑆𝐴𝑔𝑒 and MMSE scores
epresented by 𝑆𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙𝑆𝑐𝑜𝑟𝑒 based on their AD and NC classifications:

𝐴𝑔𝑒 = ReLu
(

MLP
(

𝐶0, 𝐶1)) (2)

𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙𝑆𝑐𝑜𝑟𝑒 = ReLu
(

MLP
(

𝐶0, 𝐶1)) (3)

.2. Contextual hierarchical attention module

Due to the slow and insidious progression of Alzheimer’s disease,
RI and PET images of subjects show small interclass differences in

isease classification. This can cause confusion when using ResNet net-
orks to identify different subject image samples. While transformers

an extract fine-grained AD image features by relying on long-range
ependencies, using transformers directly at the 3D pixel level would
esult in excessive model parameters, which is not conducive to train-
ng. To address these issues, we propose the Contextual Hierarchical
ttention Module (CHAM), which aims to suppress redundant infor-
ation in input images, reduce the parameters of the Transformer in

he model, and improve the recognition accuracy of the model. CHAM
ccurately locates lesions in images, strengthens the association be-
ween multiple modalities, reduces embedded transformer parameters,
mproves model accuracy, and is a hierarchical multi-modal fusion
ttention module that can be well integrated with ResNet networks.

.2.1. Improving channel attention
The original channel attention module (as illustrated in Fig. 5)

eceives an input feature map with four dimensions information: height
𝐻), width (𝑊 ), depth (𝐷), and channels (𝐶). To create two distinct
eature dimensions, the input feature map 𝐅 of shape 𝐻 ×𝑊 × 𝐷 × 𝐶
ndergoes average pooling (𝐅𝐂𝑎𝑣𝑔) and maximum pooling (𝐅𝐂𝑚𝑎𝑥). The
utput is then fed to the MLP (multi-layer perceptron) layer.

To enhance the learning of MRI pathology feature information
ttention assignment and improve the interaction between different
odalities, the original MLP layer was replaced with a Transformer
odule, as shown in Fig. 6. Let the input modal image data be 𝑁𝑖𝑛 =
𝑁1, 𝑁2,… , 𝑁𝑖} where 𝑖 is the number of input modalities, and the
imension is 𝐷𝑖 ∈ R1×1×1×𝐶 after average pooling and maximum
ooling. Each modality undergoes a Transformer operation that relies
n a linear projection of each feature in 𝐷𝑖 using a scaled dot product
o compute a set of attention-related vectors: the query matrix 𝐒𝑄, the
ey matrix 𝐒𝐾 and the value matrix 𝐒𝑉 as given below.
5

𝑄 = 𝐷𝑖𝐖𝑞 (4) e
Fig. 5. Original channel attention architecture.

Fig. 6. Improved channel attention architecture.

𝐒𝐾 = 𝐷𝑖𝐖𝑘 (5)

𝐒𝑉 = 𝐷𝑖𝐖𝑣 (6)

where 𝐖𝑞 , 𝐖𝑘, 𝐖𝑣 are learnable hyperparameter matrices whose di-
mension size is denoted as 𝐖𝑞 ∈ R𝐷𝑠∗𝐷𝑞 , 𝐖𝑘 ∈ R𝐷𝑠∗𝐷𝑘 , 𝐖𝑣 ∈ R𝐷𝑠∗𝐷𝑣

espectively. The query matrix assigned to each value in the sequence
nd the corresponding key matrix are utilized to obtain the attention
eights by dot product operation, and the associated attentions of
ifferent sequence values are denoted as follows:

tt = sof tmax

(

𝐒𝑄
(

𝐒𝐾
)𝑇

√

𝐷𝑘

)

𝐒𝑉 (7)

The parameter
√

𝐷𝑘 is used to normalize the values and prevent the
gradient from vanishing.

The Transformer is an attention feature weight assignor. The param-
eter size of the Transformer was experimentally analyzed qualitatively
to better detect feature information of different sizes in 𝐅𝐂𝑎𝑣𝑔 and
𝐅𝐂𝑚𝑎𝑥 when taking certain values [40]. Next, a join operation merges
the properties of 𝐅𝐂𝑚𝑎𝑥 and 𝐅𝐂𝑚𝑎𝑥 to create a new channel attention
map 𝑀𝐴𝐶 (𝐅) ∈ R1×1×1×𝐶 . It was observed in the experiment that the
attention map 𝑀𝐴𝐶 (𝐅) represents the fraction of the original feature
map (𝐅) containing pathological and non-pathological regions, which
is the ratio of abnormal to normal points in the image. However, if the
output of 𝑀𝐴𝐶 (𝐅) is directly fed into the next convolution module,
the computation will not learn the correlation of various modalities. To
address this, a weighting operation is introduced to emphasize the sig-
nificance of various modal lesion locations. The ratio of the output from
𝑀𝐴𝐶 (𝐅) to the original picture is multiplied, and each channel is then

eighted individually. This technique further amplifies information
bout disease characteristics in the original image while suppressing
nformation about non-disease aspects. The resulting feature maps from
he weighting operation are input data for the subsequent layer to

nhance the model’s ability to recognize Alzheimer’s disease.
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Fig. 7. Original spatial attention architecture.

Fig. 8. Improved spatial attention architecture.

4.2.2. Improving spatial attention
In the next network layer, the original spatial attention mechanism

(as depicted in Fig. 7) is upgraded by allowing the model to allo-
cate attention weights to multi-modal data features within the spatial
dimension of the feature map.

The input feature map dimension is 𝐅𝑖𝑛 ∈ R𝐻×𝑊 ×𝐷×𝐶 , and the
eature maps are average-pooled and maximum-pooled for each chan-
el to obtain the sizes 𝐅𝐒𝑎𝑣𝑔 and 𝐅𝐒𝑚𝑎𝑥. Improving the convolutional
etwork’s original spatial attention module with a Transformer module
s shown in Fig. 8, increasing the interaction of multi-modal fea-
ure data in the spatial dimension. The new approach involves first
verage-pooling and maximum-pooling the feature map to obtain a
imension of 𝐃𝑖 ∈ R𝐻×𝑊 ×𝐷×1. Then the Transformer reassigns spa-
ial attention weights, and the features of 𝐅𝐒𝑎𝑣𝑔 and 𝐅𝐒𝑚𝑎𝑥 are com-
ined using a join operation to generate a new spatial attention map
𝐀𝑆 (𝐅) ∈ R𝐻×𝑊 ×𝐷×1. Finally, the attention map is dot-multiplied
ith the original image, matching each original image pixel with multi-
odal attention weights to obtain a spatial hierarchical fusion feature
ap.

.2.3. CHAM model architecture
The CHAM model architecture is designed to improve the diagnostic

ssessment of Alzheimer’s scan brain maps, as the original Convolu-
ional Block Attention Module(CBAM) network is found to underper-
orm in detecting specific pathological points. The updated channel
ttention network and spatial attention were combined to improve
he recognition of different sizes and shapes of pathological points in
he modality. This CHAM module, illustrated in Fig. 9, enables the
odel to capture features of each mode more effectively by reassigning

ttention weights to different modal channels and spatial dimensions.
urthermore, integrating a Transformer at the attention level allows for
fficient feature learning and reduces the model’s parameters.

Integrating Transformer modules within CHAM for both channel
nd spatial attention mechanisms involves reshaping the feature map
o accommodate the Transformer module, which then learns the depen-
encies between channels for channel attention. The encoder’s output
s transformed through an activation function like sigmoid to generate
he channel attention map. For spatial attention, the feature map is
ompressed along the channel dimension and input into another Trans-
ormer encoder, capturing the interactions between different spatial
ositions. The output from this encoder is similarly activated to form
6

Fig. 9. CHAM module.

the spatial attention map. This integration allows the model to leverage
the strengths of Transformers, capturing more complex dependencies at
both channel and spatial levels.

To integrate Transformer modules into the spatial and channel
attention modules of CHAM with dimensions (𝐶,𝑊 ,𝐻,𝐷), feature ex-
raction is first performed on the four-dimensional feature maps. In the
hannel attention module, the feature map is reshaped to (𝐶,𝑁)(𝑁 =
×𝐻 ×𝐷), and then passed through a Transformer encoder to capture

he dependencies between channels, outputting a channel attention
ap processed by a sigmoid function. In the spatial attention module,

he feature map channels are compressed and stacked into a shape of
2,𝑊 ,𝐻,𝐷), then reshaped to (𝑁, 2) for input into another Transformer
ncoder, which learns the dependencies between spatial positions.
eshape the output back, reduce it through a convolution layer to
(1,𝑊 ,𝐻,𝐷) spatial attention map, and apply a sigmoid function.

hese modifications enable the model to learn intricate attention pat-
erns across channels and spatial dimensions effectively, leveraging the
ransformer’s ability to model long-range dependencies.

.3. Loss function

The model training in this study involves three primary tasks: image
ategorization, age regression, and clinical score regression. For the
ategorization task, the cross-entropy loss function is utilized, which
s defined as follows:

𝑠 = − 1
𝑀

𝑀
∑

𝑚=1

(

𝑦′𝑚 log
(

𝑦𝑚
)

+
(

1 − 𝑦′𝑚
)

log
(

1 − 𝑦𝑚
))

(8)

where 𝑀 represents the number of classifications, 𝑦𝑚 is the true label,
and 𝑦′𝑚 is the predicted label assigned by the model.

The objective of the regression task in this study is to predict clinical
scores that significantly influence Alzheimer’s disease. This study uses
root mean square error (RMSE) loss to reduce the effect of outliers
on model updates since intra-class clinical score differences cannot
be ignored due to the high specificity of Alzheimer’s disease. The
regression loss for age and clinical scores is defined as:

𝐿𝑟 =
1

2𝑀

𝑀
∑

𝑖=0

(

𝑆𝑖 − 𝑆′
𝑖
)2 (9)

where 𝑆𝑖 is the predicted clinical score or age value, and 𝑆′
𝑖 is the

orresponding real clinical score or age data. The overall target loss
quation of the model is an aggregation of weights for the classification
nd regression tasks expressed as:

= 𝐿𝑠 +
(

1 − 𝜆1
)

𝐿𝑟1 + 𝜆2𝐿𝑟2 (10)

ince the primary goal of the model is classification, the classification
oss carries the largest weight. The learnable weights for the two
egression tasks of the model are denoted by 𝜆1, and 𝜆2, respectively,

and their sizes can be adaptively adjusted during model training.
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Table 2
Training parameters.

Parameter Value

Optimizer Adam
Loss function Cross-Entropy+L2
Batch size 4
Epochs 100
Learning rate 0.00001

5. Experiments and results

This section first details the experimental setup to demonstrate
how the components and multi-modal fusion in the proposed tech-
nique contribute to performance. Then, it describes the ablation study
findings. Next, the proposed approach is compared to other attention-
based methods. Finally, visualization techniques illustrate the different
attentional networks and explain why this paper’s proposed method is
superior.

5.1. Experimental setting

To overcome the limited amount of data available for each subject
when using 3D data as input, a data augmentation method of random
scaling, cropping, and flipping was used to expand the single subject
data. The initial learning rate was set at 0.00001, and the Adam opti-
mizer was used to adjust the learning rate during training dynamically.
The model was trained and predicted using a batch size of 4 and
100 iterations on an NVIDIA RTX2080Ti graphics card. We utilized
a 5-fold cross-validation method for model evaluation. The learning
rate began at 0.00001 and was scheduled to decrease by half after
every 10 training epochs. Additionally, the batch size was adjusted
to 10% of its original size after every 25 epochs to improve training
dynamics. To prevent overfitting, the early stop was implemented.
Table 2 summarizes the individual training settings.

To evaluate our model, we divided the dataset into five parts and
optionally chose one of the subsets as the test set and the other four
as the training set. The training model was evaluated on the test set.
This process was repeated five times to ensure each subset was used as
a test set.

5.2. Evaluation metrics

The model’s training outcomes are evaluated using several met-
rics, including accuracy, precision, sensitivity, and balanced F-score
(F1-SCORE). These are calculated using the equations shown below:

𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(11)

𝑃𝑅𝐸 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(12)

𝑆𝐸𝑁 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(13)

𝑅𝐸𝐶 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(14)

𝐹1 = 2 × 𝑃𝑅𝐸 × 𝑅𝐸𝐶
𝑃𝑅𝐸 + 𝑅𝐸𝐶

(15)

For instance, accuracy measures the proportion of correctly pre-
icted diseases to all diseases, as demonstrated in the example (11),
here it is used to determine the accuracy of Alzheimer’s disease
rediction. Sensitivity, on the other hand, is the percentage of the
umber of correctly predicted Alzheimer’s disease cases, as seen in the
xample (13). Precision, recall, and F1-score are also used to evaluate
odel performance, with the latter being a measure of the effectiveness

f the model categorization. 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁 represent truly
7

ositive, truly negative, false positive, and false negative, respectively.
Fig. 10. Data results of different models trained and tested.

5.3. Ablation study

A series of ablation tests were conducted to evaluate the effective-
ness of the proposed approach. These ablation experiments were carried
out using data from ADNI1, ADNI-GO, ADNI2, and ADNI3.

5.3.1. Effectiveness of CHAM module in the diagnosis of AD
This study aims to analyze the impact of the CHAM module on

the classification performance of Alzheimer’s disease. Specifically, the
study aims to evaluate the effectiveness of using different network
configurations, including ResNet only, embedding channel attention,
embedding spatial attention, embedding CBAM module, and embed-
ding the CHAM module, on the recognition rate of Alzheimer’s disease.
The training results are presented in Fig. 10.

The experimental results indicate that using only the ResNet net-
work leads to the model learning the potential representation of each
branch independently, rather than for the joint representation of multi-
modal data, with 87.50% ± 1.12% accuracy for five-fold cross-
validation. When using channel attention and spatial attention sep-
arately, both improved compared to ResNet, with spatial attention
outperforming channel attention in the Alzheimer’s dataset. This is
because each subject’s image data is a grayscale map and contains
more information in the slices. When the CBAM module is embedded,
although each branch performs attention learning for its modality
data to better represent potential features, it does not learn well
for multi-modal data interactions, achieving the accuracy for five-
fold cross-validation higher than that of ResNet alone at 90.18% ±
0.85%. Finally, when ResNet is embedded in the CHAM module, the
recognition accuracy of five-fold cross-validation achieves the best
value of 93.15% ± 2.01%. The training loss curves in Fig. 11 show that
the ResNet model and models with channel/spatial attention modules
fit slower between 20 and 30 epochs. The network combined with the
CHAM module fits faster and better than the network combined with
the CBAM module.

Moreover, the impact of the Transformer with different layers in the
CHAM module was trained and compared as depicted in Fig. 12. The
corresponding values are presented in Table 3. The study revealed that
the model’s identification capacity steadily increased as the number of
layers increased, and the model achieved maximum accuracy when the
number of layers was 4.

5.3.2. Effectiveness of multi-task in the diagnosis of AD
The previous study proposed a multi-task learning approach to

improve the generalization ability of the model while reducing its com-
plexity through a hard constraint-sharing method. During the collection
of Alzheimer’s data, the ADNI database was utilized to determine the
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Fig. 11. Training loss curves for the five training models.
stage of the disease based on various clinical questionnaire scores.
Consequently, our experiments used the MMSE clinical scores as a
model task. Additionally, brain volume tends to decrease with age
in Alzheimer’s patients, making age another relevant task. Each task
was analyzed in this study, and the results are presented in Table 4.
8

As depicted in Fig. 13, using dichotomous classification alone re-
sulted in weaker recognition outcomes. However, when age or MMSE
score data were incorporated as relevant complementary tasks, the
accuracy of the model improved, confirming that age and score data im-
pact Alzheimer’s disease detection. Performance improved significantly
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Table 3
Evaluation values of the Transformer with different layers in CHAM modules. In the
results, the former represents the mean and the latter the standard deviation.

Layer number Acc (%) F1 (%)

1 90.00 ± 0.69 90.00 ± 0.60
2 90.92 ± 1.05 90.90 ± 1.03
3 92.41 ± 1.31 92.40 ± 1.25
4 93.15 ± 2.01 93.14 ± 1.96
5 92.70 ± 1.81 92.67 ± 1.91
6 93.00 ± 0.64 93.00 ± 0.72
7 92.55 ± 0.80 92.55 ± 0.78
8 90.92 ± 1.01 90.91 ± 1.10

Fig. 12. Classification effect of the Transformer in CHAM module with different layers.

Table 4
Scoring metrics for identifying Alzheimer’s disease by different tasks. In the results, the
former represents the mean and the latter the standard deviation.

Index II-Classify II-Classify&AGE II-Classify
&MMSE

II-Classify&AGE
&MMSE

ACC (%) 91.07 ± 0.85 92.41 ± 1.07 92.56 ± 1.72 93.15 ± 2.01
PRE (%) 91.43 ± 0.60 92.48 ± 0.81 92.96 ± 1.49 93.57 ± 2.00
REC (%) 91.07 ± 0.71 92.41 ± 1.30 92.56 ± 1.32 93.15 ± 1.92
F1 (%) 91.04 ± 0.66 92.41 ± 0.84 92.54 ± 1.56 93.14 ± 1.96
AUC (%) 91.07 ± 0.91 92.41 ± 1.10 92.56 ± 1.69 93.15 ± 2.08

when combining all three tasks. Each task positively affects Alzheimer’s
disease recognition, and different classification features are distributed
among the tasks. Notably, a single AD classification task cannot share
the same feature representation, a limitation. In contrast, considering
multiple tasks can guide HAMMF learning more comprehensively.

5.3.3. Effectiveness of different modal characteristics on the diagnosis of
AD

To examine how different types of features affect the classification
results of a model, the study compared single modality patterns to
multiple modality patterns. Table 5 and Fig. 14 presents the results of
all the comparisons. The brain’s white and gray matter contains many
memory related neurons, and researchers have found that the volume
of white and gray matter in the brains of Alzheimer’s disease (AD)
patients is smaller than in healthy subjects. This experiment confirmed
that gray and white matter images are crucial in identifying AD,
while PET images complement the diagnosis. When multiple modalities
were fused for classification, the highest accuracy was achieved by
combining CSF, PET, GM and WM image groups (93.15% ± 2.01%)
followed by GM, PET, and WM image groups (92.85% ± 1.50%), WM,
CSF and PET image groups (92.55% ± 1.83%), GM, WM, and CSF image
groups (91.07% ± 1.05%), GM, CSF, and PET image group (90.92%

0.98%). The study concluded that the proposed network is more
table in learning white matter features, and the model’s accuracy
ecreases significantly when white matter features are missing. Con-
9

ersely, the absence of cerebrospinal fluid data less affects the model’s
Fig. 13. Classification results of Alzheimer’s by different tasks.

Fig. 14. Classification results of Alzheimer’s by different combination characteristics.

accuracy because fewer features are learned from this modality. Based
on this dataset, the degree of modality importance was ranked as
follows: white matter images > PET images > gray matter images >
cerebrospinal fluid images.

5.4. Comparison of models and existing methods

The paper compares the proposed method with existing methods
regarding total training time to evaluate its performance. Table 6
displays the comparison, and the proposed method outperforms ex-
isting methods in terms of evaluation metrics. The results show the
proposed network exhibits excellent classification performance. The
proposed method performs well in classification despite inferior model
size and training time compared to the tiny model with 50.654 MB
size, 120.30 min training time, and 93.15% ± 2.01% accuracy, model
size and time are significantly reduced compared to comparable struc-
tured models. Adding the original CBAM module to ResNet increased
training duration, model size to 21.6 MB, and accuracy to 90.18% ±
1.06%. Introducing the CHAM module significantly improved accuracy,
though training time and parameters increased. The proposed model
achieves better results than recent methods in AD classification, and
its performance is comprehensive. The proposed model for Alzheimer’s
recognition was compared to recent methods that use the entire 3D
image as input, and it was discovered that the proposed model performs
better in AD classification. Additionally, when comparing networks
with Transformer structure, it was observed that the network proposed
by Dai et al. [41] has a significantly larger number of parameters
than the current paper. Still, the difference in training accuracy is
negligible. The method of Jang et al. [42] underperforms our method of
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Table 5
Results of Alzheimer’s classification by different modal characteristics. In the results, the former represents the mean and the latter the standard
deviation.

Modals ACC (%) PRE (%) REC (%) F1 (%) AUC (%)

GM+WM+CSF 91.07 ± 1.05 91.47 ± 0.96 91.07 ± 0.85 91.04 ± 1.03 91.07 ± 1.01

GM+WM+PET 92.85 ± 1.50 93.59 ± 1.32 92.85 ± 1.48 92.80 ± 1.22 92.85 ± 1.45

GM+CSF+PET 90.92 ± 0.98 91.06 ± 0.83 90.92 ± 0.86 90.91 ± 0.96 90.92 ± 1.06

WM+CSF+PET 92.55 ± 1.83 92.69 ± 1.61 92.55 ± 2.01 92.55 ± 1.91 92.55 ± 1.85

ALL 93.15 ± 2.01 93.57 ± 2.00 93.15 ± 1.92 93.14 ± 1.96 93.15 ± 2.08
Fig. 15. Heat map of attention of three models with different layers and different slice directions.
Fig. 16. Labeling of anatomical parts of the brain.

multimodal Alzheimer’s disease fusion. Overall, the study demonstrates
that the proposed model delivers exceptional results in terms of overall
performance.

The statistical testing method used in this study is the paired t-test.
The method of this paper is compared with the multi-task and multi-
modal fusion methods. We conduct statistical tests between the top
three methods in terms of accuracy and the proposed method. This
study conducts statistical tests between the three methods in terms
of accuracy and the proposed method. The HAMMF model exhibits
a marginally superior diagnostic accuracy compared to the TransMed
(paired t-test: t = 2.31, 𝑝 < 0.015), Attention + MIL + CNN (paired t-test:
t = 3.64, 𝑝 < 0.017), M3T(paired t-test: t = 2.27, 𝑝 < 0.008) models in
multi-task and multi-modal assisted diagnosis.

5.5. Model visualization comparison

Due to variable sized lesion patches in the brains of Alzheimer’s
patients, there is more variation between clusters and less variation
within clusters. During training, the model focused not just on disease-
related information but also on most non-disease information as the
number of training cycles increased. The non-disease information in the
model’s final classification became an extraneous feature that interfered
with disease diagnosis, lowering test set classification accuracy. We
10
Table 6
Comparison of existing methods with the method proposed in this paper. In the results,
the former represents the mean and the latter the standard deviation.

Methods Size (MB) Training time
(min)

ACC (%)

ResNet [7] 11.670M 84.6 ± 10.4 87.5 ± 2.36
SENet [10] 12.681M 86 ± 15.2 88.75 ± 3.34
CABM [43] 21.683M 87.5 ± 12.3 90.18 ± 1.06
VGG19 [44] 78.1 MB 140.1 ± 31.5 88.2 ± 0.27
H-FCN28 [45] 62.54 MB 12.5 ± 5.5 90.32 ± 0.68
CNN [46] 20.33 MB 60.8 ± 11.4 82.93 ± 0.34
Attention + MIL + CNN [47] 89.67 MB 130.9 ± 30.4 92.4 ± 1.5
TransMed [41] 385 MB 540 ± 60.4 93.61 ± 0.56
M3T [42] 89.22M 188 ± 20.4 92.21 ± 1.03
HAMMF 50.654M 120.3 ± 15.6 93.15 ± 2.01

use Grad-CAM [48] visualization in this study to better illustrate how
different models affect network performance and make the model more
interpretable. Grad-CAM can show the areas the model focuses on after
various modules. In this experiment, Grad-CAM, the CBAM modular
network, and HAMMF were used to output heatmaps after each ResNet
network level. The heatmap is shown in Fig. 15. The proposed model
in this paper was able to represent the data characteristics well in
learning Alzheimer’s MRI image data, and the black areas represent
the regions the model focuses on, likely with severe brain lesions.
In contrast, the ResNet network and the combined CBAM module
network performed poorly in learning, and their attention regions were
inadequate. To demonstrate the model’s effectiveness in identifying
AD-specific patterns in neuroimaging data, this paper also labeled the
attentional map of HAMMF with anatomical parts, as shown in Fig. 16.
This paper concludes that the HAMMF network has excellent results in
diagnosing Alzheimer’s disease, and comparing brain anatomy shows
the model pays more attention to frontal, parietal, occipital lobes,
lenticular nucleus, and other regions, which to some extent explains
the pattern of model learning.

5.6. Model performance evaluation

In Fig. 17(a), the area under the macro-average ROC curve is 0.922,
indicating that the overall model has high classification performance.
The ROC curve area for the AD class is 0.906, while the area for
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Fig. 17. ROC curves for the five models. ROC curves typically feature true positive rate (TPR) on the Y axis, and false positive rate (FPR) on the X axis.
he CN class is 0.908; these two values are close and relatively high,
uggesting that the model also has good classification ability for these
wo categories. The closer the ROC curve is to the upper left corner, the
etter the performance of the model is generally, as it implies achieving
higher true positive rate while maintaining a low false positive rate.

ollowing the above analysis of Fig. 17(b)(c)(d)(e), it can be seen that
11

he CHAM module has the best expressive power among all the models.
6. Conclusion

This study presents a novel approach called HAMMF for early
diagnosis of Alzheimer’s disease. The proposed model employs a con-
textual hierarchical attention module to perform secondary extraction
of multi-modal disease features obtained through ResNet. The atten-
tion module separately extracts channel and spatial attention feature
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weights within each modality and then redistributes attention feature
weights among different modalities. This multiple attention alloca-
tion approach effectively strengthens the correlation between various
modalities, enhancing the extraction of potential information and im-
proving diagnostic performance. By implementing the Transformer at
the attention level, computational volume and computation time are
reduced compared to applying the Transformer directly to multi-modal
voxel features. Furthermore, this study incorporates disease-related
regression tasks as auxiliary judgments in the classification problem,
exploring the connections between subject age, clinical scores, subjects,
and the importance of different tasks in multiple ways to inform the
final diagnosis.

The proposed method’s effectiveness is demonstrated on the ADNI
dataset and outperformed traditional CNN and the latest methods with
an accuracy of 93.15%. Visualization experiments are also conducted
to validate the effectiveness and reliability of the proposed method. In
this study, the developed model is interpreted from a visual perspective
for AD classification. The proposed model in this paper was able to
represent the data characteristics well in learning Alzheimer’s MRI
image data, and the black areas represent the regions the model focuses
on, likely with severe brain lesions. In contrast, the ResNet network and
the combined CBAM module network performed poorly in learning, and
their attention regions were inadequate. Furthermore, utilizing various
evaluation metrics to explain the model’s classification performance
quantitatively, it can be observed that our classification results perform
relatively well overall among all outcomes.

While the proposed model exhibits excellent performance, certain
aspects require further consideration. The model may show significant
performance variations when applied to new, unseen data compared to
its performance on the training data. Moreover, the study is limited
to MRI and PET imaging modalities; the efficacy of the model with
other modalities is yet to be determined. Addressing these points could
provide a more comprehensive evaluation of the model’s generalization
ability.

7. Limitations and future work

The study proposes a hierarchical attention-based multi-task and
multi-modal fusion model that performs well on the ADNI dataset.
However, the model has some limitations that need to be addressed.
The multi-task learning experiment only considers age and MMSE
score data, which is not comprehensive enough since AD clinical score
data, such as GDSCALE, FAQ, and other score data, should also be
included. Also, biomarkers are essential for AD diagnosis and should
be incorporated into the model.

In discussing our model for Alzheimer’s disease diagnosis, we must
acknowledge the presence of certain limitations, particularly concern-
ing potential data set biases, the generalizability of the model, and
its performance in clinical settings. Firstly, data set bias is a signifi-
cant concern. The dataset our model relies on may not represent the
broader population, especially if the data is predominantly sourced
from specific demographics (such as particular races, age groups, or
geographical regions). This limitation constrains the accuracy and reli-
ability of our model when generalized to a global population. Secondly,
the issue of generalizability involves the model’s consistent perfor-
mance across different datasets. While the current model performs
well on the training dataset employed, its performance on external
datasets remains unknown. To enhance the model’s generalizability, we
need to employ cross-dataset validation, utilize broader cross-validation
techniques, and explore transfer learning strategies to adapt to different
data distributions. Lastly, the model’s performance in actual clinical
settings can be influenced by a variety of factors, including differing
diagnostic criteria, data acquisition methods, and variability in clinical
practices. Therefore, even if a model exhibits excellent performance
in a research setting, it may encounter challenges in clinical practice.
To overcome these limitations, empirical studies need to be conducted
12
in clinical settings to test the model’s efficacy and iteratively optimize
it based on clinical feedback. Moreover, establishing collaborative re-
lationships with clinicians to gain insights from practical applications
is crucial for guiding model improvements. In summary, although the
model shows potential for AD diagnosis, further research and develop-
ment are necessary to ensure its accuracy, robustness, and adaptability
for application across diverse populations and clinical practice.

Future work should focus on constructing a multi-task representa-
tion of the model using more comprehensive tasks and analyzing the
impact of different tasks on classification. Secondly, the current model
design, though better than similar models, requires expansion due to its
size and some missing multi-modal data. Future work needs to generate
more supplementary data with the help of adversarial networks to
increase the data capacity and thus improve the model’s generalization
performance.
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